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Abstract
We define and discuss the notion of pseudospherical surfaces in asymptotic
coordinates on time scales. Thus we extend well-known notions of discrete
pseudospherical surfaces and smooth pseudosperical surfaces on more exotic
domains (e.g., the Cantor set). In particular, we present a new expression for
the discrete Gaussian curvature which turns out to be valid for asymptotic nets
on any time scale. We show that asymptotic Chebyshev nets on an arbitrary
time scale have constant negative Gaussian curvature. We present also the
quaternion-valued spectral problem (the Lax pair) and the Darboux–Bäcklund
transformation for pseudospherical surfaces (in asymptotic coordinates) on
arbitrary time scales.

PACS numbers: 02.40.Hw, 02.40.Dr, 02.30.Ik, 02.60.Jh
Mathematics Subject Classification: 53A05, 39A12, 37K35, 52C07

1. Introduction

A time scale (or a measure chain) is an arbitrary nonempty closed subset of the real numbers
[15]. Typical examples are R, Z, any unions of isolated points and closed intervals, and, finally,
discrete sets containing all accumulation points (like the Cantor set). The time scales were
introduced in order to unify differential and difference calculus [15, 16]. Partial differentiation,
tangent lines and tangent planes on time scales have been introduced recently [5]. In this paper
we suggest how to extend the differentiation also on Lie groups. The case of the SU(2) group
is discussed in detail.

The difference geometry [22] is a discrete analogue of the differential geometry. In
the past years one can observe a fast development of the integrable difference geometry
(see, for instance, [3, 4, 8–11, 23]) closely related to the classical differential geometry
[12, 13]. It is interesting that in the discrete case one recovers explicit constructions and
transformations known in the continuous case (e.g., Darboux, Bäcklund, Ribaucour, Laplace
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and Jonas transformations, soliton and finite-gap solutions etc). A natural idea is to unify the
difference and differential geometries and to formulate the integrable geometry on time scales.

In this paper we propose such formulation for pseudospherical immersions (surfaces
of constant negative Gaussian curvature). The discrete pseudospherical surfaces have been
introduced a long time ago [21, 27] and studied intensively in the past years [2]. The idea
to extend the notion of pseudospherical surfaces on arbitrary time scales first appeared in
[26]. However, throughout that work it was assumed that all points were isolated (the discrete
case). The discrete Gaussian curvature and the Bäcklund transformation were not considered
at all. In the present paper we formulate a natural geometric definition of pseudospherical
surfaces (more precisely: asymptotic Chebyshev nets) on time scales and present the associated
spectral problem (the Lax pair) and the Darboux–Bäcklund transformation. Thus the discrete,
continuous and other cases are first described in a unified framework.

2. Differentiation on time scales

This section collects basic notions and results concerning the differential calculus on time
scales, compare [5]. To avoid some unimportant complications we confine ourselves to time
scales which are not bounded neither from above nor from below.

Definition 1 ([15]). Let a time scale T is given. The maps σ : T → T and ρ : T → T, defined
by

σ(u) := inf{v ∈ T : v > u}, ρ(u) := sup{v ∈ T : v < u}, (1)

are called jump operator and backward jump operator, respectively.

Definition 2 ([15]). A point u ∈ T is said to be right-scattered if σ(u) > u, or right-
dense if σ(u) = u, left-scattered if ρ(u) < u, or left-dense if ρ(u) = u and isolated if
ρ(u) < u < σ(u).

Definition 3 ([5]). The delta derivative of a continuous function f is defined as

∂f (t)

�t
= lim

s→t

s �=σ(t)

f (σ (t)) − f (s)

σ (t) − s
, (2)

and the nabla derivative is defined by

∂f (t)

∇t
= lim

s→t

s �=ρ(t)

f (ρ(t)) − f (s)

ρ(t) − s
. (3)

In this paper we focus on functions defined on two-dimensional time scales, i.e., on
T1 × T2, where T1, T2 are given time scales. The extension on n-dimensional time scales is
usually straightforward. We denote

t ≡ (t1, t2) ∈ T1 × T2,

σ1(t) = (σ (t1), t2), σ2(t) = (t1, σ (t2)), (4)

ρ1(t) = (ρ(t1), t2), ρ2(t) = (t1, ρ(t2)).

Obviously, the notions from definition 2 can be defined independently for each variable.
For example, a point can be right-scattered in the first variable, and right-dense in the second
variable, shortly: 1-right-scattered and 2-right-dense.

We stress that throughout this paper σ1 and σ2 usually denote jump operators, unless
stated otherwise (only in few places in the text we mention Pauli sigma matrices denoted by
σσσ 1,σσσ 2,σσσ 3).
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In the discrete case (e.g., T1 = T2 = Z) we have σj (u) = Tju and ρj (u) = T −1
j u, where

T1, T2 are usual shift operators. Therefore delta and nabla differentiation can be associated
with forward and backward data, respectively [10].

Definition 4 ([5]). The partial delta derivative of a continuous function f is defined as

∂f (t)

�tj
= lim

sj →tj

sj �=σ(tj )

f (σj (t)) − f (s)

σ (tj ) − sj

. (5)

The definition of the partial nabla derivative is analogical.

Proposition 1 ([5]). If the mixed partial delta derivatives exist in a neighbourhood of
t0 ∈ T1 × T2 and are continuous at t = t0, then

∂2f (t0)

�t1�t2
= ∂2f (t0)

�t2�t1
.

Note that all results and definitions in terms of delta derivatives have their nabla derivatives
analogues. In the continuous case (e.g., T1 = T2 = R) the delta derivative coincides with the
right-hand derivative.

In the continuous case the differentiability implies the existence of the tangent plane. The
delta differentiability does not have this important property. We need a stronger notion: the
complete delta differentiability.

Definition 5 ([5]). We say that a function f : T → R is completely delta differentiable at a
point t0 ∈ T, if there exist a number A such that

f (t) − f (t0) = A(t − t0) + (t − t0)α(t0, t),

f (t) − f (σ(t0)) = A(t − σ(t0)) + (t − σ(t0))β(t0, t),

where α(t0, t0) = 0, β(t0, t0) = 0, lim
t→t0

α(t0, t) = 0, and lim
t→t0

β(t0, t) = 0.

Proposition 2 ([5]). If the function f is completely delta differentiable at t0, then the graph
of this function has the uniquely determined delta tangent line at the point P0 = (t0, f (t0))

specified by the equation

y − f (t0) = ∂f (t0)

�t
(x − t0).

If P0 is an isolated point of the curve � (hence P0 �= P σ
0 ), then the delta tangent line to �

at P0 coincides with the unique line through the points P0 and P σ
0 .

The definition of the complete delta differentiability in two-dimensional case is similar to
definition 5 (for details, see definition 2.1 in [5]). Instead of this definition we present here an
important sufficient condition for delta differentiability.

Proposition 3 ([5]). Let f : T1 × T2 → R is continuous and has first-order partial delta
derivatives in a neighbourhood of t0. If these derivatives are continuous at t0, then f is
completely delta differentiable at t0.

If P0 �= P
σ1
0 and P

σ2
0 �= P0 (hence also P

σ1
0 �= P

σ2
0 ), then the delta tangent plane to the

surface S at P0 (if exists) coincides with the unique plane through P0, P
σ1
0 and P

σ2
0 .
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Proposition 4 ([5]). If the function f : T1 × T2 → R is completely delta differentiable at
t0 = (t01, t02), then the surface represented by this function has the uniquely determined delta
tangent plane at the point P0 = (t01, t02, f (t0)) specified by the equation

z = f (t0) +
∂f (t0)

�t1
(x − t01) +

∂f (t0)

�t2
(y − t02), (6)

where (x, y, z) is the current point of the plane.

In the following sections of this paper we define pseudospherical surfaces on time scales
in terms of delta derivatives. In order to simplify the notation the delta derivatives will be
denoted by

Djf ≡ ∂f (t)

�tj
. (7)

Propositions 2 and 4 show that in geometrical contexts the complete delta differentiability,
which guarantees the existence of tangent lines and tangent planes, is more useful than the
delta differentiability.

3. Differentiation of SU (2)-valued functions on time scales

Analytic approaches to pseudospherical surfaces usually involve the Lie group SU(2), Lie
algebra su(2) and quaternions [3, 17, 20, 25]. Therefore it is important to extend the notion
of the delta derivative on Lie groups.

Given a function f : T → M , where M is a submanifold, we can define the delta derivative
of f in a quite natural way. If t is right-dense, then we compute the tangent vector in the point
t just repeating the standard procedure, well known in the case T = R. If t is right-scattered,
then we join f (t) and f (σ(t)) by the shortest geodesic. The delta derivative is defined as the
vector tangent to this geodesic. If M = G is a Lie group, then we may map the tangent vector
into the corresponding Lie algebra g. The length of this vector is δ/ε, where ε = σ(t) − t and
δ is the length of the geodesic between t and σ(t).

If M is immersed in an ambient Euclidean space, then one can define the delta derivative
in another way, considering geodesics (straight lines) in the ambient space instead of geodesics
on M. Both definitions yield the same results for right-dense points, but for right-scattered
points we get two different definitions of the delta derivative (even after projection onto the
corresponding tangent space). In the general case these ideas will be developed elsewhere.
Here we confine ourselves to the Lie group SU(2).

The Lie group SU(2) is defined as {
 : 
−1 = 
†, det 
 = 1}. Any element 
 ∈ SU(2)

can be parametrized as


 =
(

a b

−b̄ ā

)
, |a|2 + |b|2 = 1. (8)

Therefore


 = Re a − e1 Re b − e2 Im b − e3 Im a, (9)

where ej = −iσσσ j (j = 1, 2, 3) and σσσ j are standard Pauli matrices. The following properties
are satisfied:

e2
1 = e2

2 = e2
3 = −1, ej ek = −ekej (j �= k), (10)

e1e2 = e3, e2e3 = e1, e3e1 = e2, (11)

e†j = −ej (j = 1, 2, 3). (12)
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Therefore the space spanned by 1, e1, e2, e3 can be identified with quaternions H. The standard
Euclidean structure is defined by the following scalar product:

〈A|B〉 = 1
2 Tr(AB†), A,B ∈ H. (13)

Then the basis 1, e1, e2, e3 is orthonormal. The space of imaginary (or pure) quaternions,
Im H, is spanned by e1, e2, e3.

The condition |a|2 + |b|2 = 1 means exactly that 
 given by (8) is a unit vector. Hence
we have the well-known conclusion that the Lie group SU(2) can be identified with the sphere
S3 ⊂ H. The Lie algebra su(2) coincides with pure quaternions Im H.

Following the general outline given above we are going to define two delta derivatives,
denoted by Dj and Dj , respectively. In the continuous case (j -right-dense points) Dj = Dj

and

Uj := (Dj
)
−1 (14)

takes values in the Lie algebra su(2). In the discrete case (j -right-scattered points) the situation
is more complicated.

Geometrically, the derivative Dj
 in the discrete case is tangent to the sphere S3 at 
,
and |Dj
| is the length of the corresponding arc. Therefore, after elementary geometric
considerations,

Dj
 = (Tj (
) − 
 cos δ)δ

ε sin δ
, cos δ := 〈Tj
|
〉. (15)

Note that

Tj
 = exp(uj δ)
, uj := ε

δ
(Dj
)
−1, (16)

and uj is a unit vector from su(2). The derivative Dj
 can be identified with the secant
joining 
 and Tj
 (in the space H):

Dj
 = Tj
 − 


ε
. (17)

Now (Dj
)
−1 is, in general, outside Im H. Therefore, it is convenient to define a projection
� : H → ImH,

�(A0 + A1e1 + A2e2 + A3e3) := A1e1 + A2e2 + A3e3, (18)

projecting a quaternion A into its imaginary (or traceless) part. One can check that

�((Dj
)
−1) = δ

sin δ
(Dj
)
−1. (19)

Throughout this paper we will use only the derivative Dj , defined by (17), but applied not
only to elements of SU(2) but to any � ∈ H. Note that

� =
(

a b

−b̄ ā

)
	⇒ Dj� =

(
Dja Djb

−Dj b̄ Dj ā

)
(20)

and the following rules of differentiation hold:

Dj(AB) = (DjA)B + σj (A)DjB, Dj (�
−1) = −σj (�)(Dj�)�−1, (21)

where A,B,� ∈ H. Therefore, Dj is convenient in calculations and turned out to be sufficient
for our purposes (see section 7, where the spectral approach for pseudospherical immersions is
presented). A formulation of another spectral approach based on the more geometric derivative
Dj is an open problem. It would be interesting to check the equivalence of both approaches.
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4. Smooth and discrete pseudospherical surfaces

Pseudospherical surfaces, i.e., surfaces (immersions) of constant negative Gaussian curvature
have been studied intensively since the middle of the 19th century, starting from 1839 [18].
The famous transformations found by Bianchi, Lie and Bäcklund turned out to be milestones
both in differential geometry and in the soliton theory. Old and recent results concerning
pseudospherical surfaces, including a lot of original references, are collected and reported for
instance in [13, 14, 19, 20], see also [1].

Let us consider a surface immersed in R
3 explicitly described by a position vector

�r = �r(s, t) (we assume that this function is sufficiently smooth). We denote the normal
vector by �n and define the so-called fundamental forms

I := d�r · d�r = E ds2 + 2F ds dt + G dt2,
(22)

II := −d�r · d�n = L ds2 + 2M ds dt + N dt2,

where the centre dot denotes the standard scalar product in R
3 and E,F,G,L,M,N are real

functions of s, t . These functions have to satisfy nonlinear equations known as Gauss–
Peterson–Codazzi equations. The Gaussian curvature can be conveniently expressed as
follows:

K = det(II )

det(I )
= (�r,1 ·�n,1 )(�r,2 ·�n,2 ) − (�r,1 ·�n,2 )(�r,2 ·�n,1 )

(�r,1 ·�r,1 )(�r,2 ·�r,2 ) − (�r,1 ·�r,2 )2
, (23)

where �r,1 := ∂�r/∂t, �r,2 := ∂�r/∂s, etc.

Definition 6. Coordinates s, t are called Chebyshev coordinates if the first fundamental form
is given by I = ds2 + 2 cos φ ds dt + dt2, i.e.,

E ≡ �r,1 ·�r,1 = 1, G ≡ �r,2 ·�r,2 = 1, F ≡ �r1 · �r2 = cos φ. (24)

If a less restrictive conditions hold

E,2 = 0, G,1 = 0, (25)

then s, t are called the weak Chebyshev coordinates.

Any weak Chebyshev coordinates s, t can be transformed (at least locally) into Chebyshev
coordinates s̃, t̃ by an appropriate change of variables s̃ = g(s), t̃ = f (t).

Definition 7. Coordinates s, t are called asymptotic if the second fundamental form is given
by II = 2M dt ds, i.e.,

�r,1 ·�n,1 = �r,2 ·�n,2 = 0, �r,1 ·�n,2 = �r,2 ·�n,1 = −M. (26)

Proposition 5. Asymptotic lines on a surface admit parameterization by Chebyshev
coordinates if and only if the surface has a constant negative Gaussian curvature. In this
case the Gaussian curvature is given by

K = −(�r,1 ·�n,2 )(�r,2 ·�n,1 )

(�r,1 ·�r,1 )(�r,2 ·�r,2 ) − (�r,1 ·�r,2 )2
= −

(
M√

E
√

G sin φ

)2

, (27)

where φ is the angle between �r,1 and �r,2.

Discrete surfaces (discrete immersions) are defined as maps

�r : ε1Z × ε2Z  (ε1m, ε2n) → �r(ε1m, ε2n) ∈ R
3,
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such that �1�r and �2�r are linearly independent for any m, n, where �j is defined by

�jf = Tjf − f

εj

, (28)

and f : ε1Z × ε2Z → R
3. In other words, we consider the case T1 = ε1Z, T2 = ε2Z,

where ε1, ε2 are fixed constants (the mesh size). Therefore, in the discrete case Dj = �j . In
particular, for ε1 = ε2 = 1 we have �j = Tj − 1.

The discrete analogue of pseudospherical surfaces endowed with asymptotic Chebyshev
coordinates is defined as follows (compare [21, 27]). Weak Chebyshev coordinates were
discretized in a similar way.

Definition 8 [2]. Discrete asymptotic weak Chebyshev net (discrete K-surface) is an immersion
�r : ε1Z × ε2Z → R

3 such that for any m, n,

• �1�r · �1�r = E(m), �2�r · �2�r = G(n), (weak Chebyshev net), discrete Chebyshev nets
correspond to E = G = 1;

• the points �r, T1�r, T2�r, T −1
1 �r, T −1

2 �r are coplanar (asymptotic net).

The plane containing �r, T1�r, T2�r, T −1
1 �r, T −1

2 �r can be interpreted as the discrete analogue
of the tangent plane and

�n := �1�r × �2�r
|�1�r × �2�r| = �1�r × �2�r√

(�1�r)2(�2�r)2 − (�1�r · �2�r)2
(29)

is the discrete analogue of the normal vector (here the cross means the vector product).

5. Some old results in a new form

In order to obtain the explicit similarity between smooth and discrete cases, we will reformulate
the definition of discrete asymptotic nets and derive another formula for the discrete Gaussian
curvature of asymptotic Chebyshev nets.

Proposition 6. For any discrete immersion �r ,

�1�n · �1�r = 0 ⇐⇒ �1�r, T1(�1�r), T1(�2�r) are coplanar.

�2�n · �2�r = 0 ⇐⇒ �2�r, T2(�1�r), T2(�2�r) are coplanar.

Proof. From the definition of �n it follows: �n ·�1�r = 0, T1�n ·T1�1�r = 0 and T1�n ·T1�2�r = 0.
Then �1�n ·�1�r = 0 ⇐⇒ T1�n ·�1�r = �n ·�1�r . Hence, T1�n ·�1�r = 0. Therefore, �1�r, T1�1�r
and T1�2�r are coplanar. The proof of the second statement is similar. �

Corollary 1. For any discrete immersion the points �r, T1�r, T2�r, T −1
1 �r, T −1

2 �r are coplanar
if and only if �1�n · �1�r = 0 and �2�n · �2�r = 0. In other words, a discrete immersion
�r : ε1Z × ε2Z → R

3 is asymptotic iff

�1�r · �1�n = �2�r · �2�n = 0, (30)

which is a discrete analogue of (26).

Proposition 7. For any discrete asymptotic weak Chebyshev net, K defined by

K := − (�1�n · �2�r)(�2�n · �1�r)
(�1�r)2(�2�r)2 − (�1�r · �2�r)2

(31)

is a constant (i.e., does not depend on m, n).
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Proof. We consider the tetrahedron ABCD: �r ≡ A, T1�r ≡ B, T2�r ≡ D, T1T2�r ≡ C. Taking
into account definition 8, we have

| �AB| = | �DC| = ε1|�1�r|, | �AD| = | �BC| = ε2|�2�r|. (32)

We denote by hD
AB the height of the triangle ABD perpendicular to AB, and by HD the height

of the tetrahedron ABCD perpendicular to the base ABC, etc. Then θ1 denotes the angle
between �n and T1�n (i.e., between the planes ABC and ABD) and θ2 denotes the angle between
�n and T2�n (i.e., between ABD and ACD). Note that the angle between ABC and BCD is T1θ2,
and the angle between ACD and BCD is T2θ1. Finally, φ is the angle between �1�r and �2�r ,
i.e.,

�1�r · �2�r = |�1�r||�2�r| cos φ. (33)

From elementary geometric considerations, we have

HB = hB
AD sin θ2, hB

AD = | �AB| sin φ, hB
CD = | �BC| sin φ,

HD = hD
AB sin θ1, hD

AB = | �AD| sin φ, hD
BC = | �DC| sin φ,

HB = hB
CD sin T2θ1, HD = hD

BC sin T1θ2, HD = HB.

(34)

The last equation results from the comparison of two formulae for the volume of the tetrahedron
HDPABC = HBPACD, where PABC = PACD because the triangles ABC and ACD are
congruent. From (34) we obtain

sin θ1

| �AB| = sin θ2

| �AD| = sin T2θ1

| �DC| = sin T1θ2

| �BC| ,

which implies

sin θ1

ε1|�1�r| = sin θ2

ε2|�2�r| = const. (35)

Then,

�1�n · �2�r = T1�n · �2�r
ε1

= |�2�r|
ε1

HD

| �AD| = |�2�r| sin θ1 sin φ

ε1
,

�2�n · �1�r = T2�n · �1�r
ε2

= |�1�r|
ε2

HB

| �AB| = |�1�r| sin θ2 sin φ

ε2
,

(�1�r)2(�2�r)2 − (�1�r · �2�r)2 = (�1�r)2(�2�r)2 sin2 φ.

(36)

Therefore, computing (31), we obtain

K = − sin θ1 sin θ2

ε1ε2|�1�r||�2�r| , (37)

and, taking into account (35), we complete the proof. �

K given by formula (31) can be considered as a natural discrete analogue of the Gaussian
curvature (27). Wunderlich [27], in the case of discrete Chebyshev nets (θ1 = θ2 = θ, |�1�r| =
|�2�r| = 1 and ε1 = ε2 = ε), proposed a similar definition:

K ′ = − sin2 θ

ε2 cos θ
. (38)

Because in this case θ = const (compare (35)), then, obviously, both K and K ′ are constant.
In the continuous limit θ → 0 which implies K ′ → K .
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6. Pseudospherical surfaces on time scales

Corollary 1 shows that the assumptions of definition 8 can be expressed completely in terms
of delta derivatives. Therefore, the extension of this definition on arbitrary time scales is
straightforward. First, given an immersion �r on a time scale, we define the normal vector

�n := D1�r × D2�r
|D1�r × D2�r| . (39)

Definition 9. An immersion �r : T1 × T2  (t1, t2) → �r(t1, t2) ∈ R
3 such that for any

t ≡ (t1, t2) ∈ T1 × T2

• �r is completely delta differentiable,
• �n is completely delta differentiable,
• (D1�r)2 = E(t1), (D2�r)2 = G(t2),
• D1�n · D1�r = D2�n · D2�r = 0,

is called an asymptotic weak Chebyshev net on the time scale T ≡ T1 × T2 (or, in particular
case E = G = 1, an asymptotic Chebyshev net).

In the continuous and discrete cases asymptotic weak Chebyshev nets have constant
negative Gaussian curvature (see propositions 5 and 7) and, as a consequence, they can be
identified with pseudospherical surfaces. This is true also in the general case.

Theorem 1. For any asymptotic Chebyshev net on a time scale T = T1 × T2,K defined by

K = − (D1�n · D2�r)(D2�n · D1�r)
(D1�r)2(D2�r)2 − (D1�r · D2�r)2

(40)

is a constant.

Proof. It is sufficient to show that D1K = D2K = 0 at any t ∈ T. If t is both 1-right-dense
and 2-right-dense, we repeat the standard proof of proposition 5. Namely, using Codazzi
equations (resulting from compatibility conditions, i.e., �n · �r,jjk = �n · �r,jkj ) we show that

k,1 = k,2 = 0, k = M√
E

√
G sin φ

.

Formula (40) yields K = −k2, comparing (27). Hence K,1 = K,2 = 0.
If t is both 1-right-scattered and 2-right-scattered, we use the proof of proposition 7. We

point out, however, that the proof of proposition 6 (which is crucial in order to identify sides
of the tetrahedron with appropriate tangent planes) needs a modification. We have to use the
assumption about complete delta differentiability of �r .

In the ‘mixed’ case the proof is also straightforward (although it seems to be most
cumbersome). Let, for instance, t is 1-right-dense and 2-right-scattered. We use the Frenet
basis �τ , �ν, �β:

�τ = �r,1√
E

, �ν = �τ ,1

κ
√

E
, �β = �τ × �ν, (41)

where κ is the curvature of the line t2 = const at t. The Serret–Frenet equations read

τ,1 =
√

Eκ�ν, �ν,1 =
√

E(κ̃ �β − κ�τ), �β,1 = −
√

Eκ̃�ν, (42)

where κ̃ is the second curvature (or the torsion). We define a unit vector �d ,

�d := D2�r√
G

, �n = �τ × �d
sin φ

. (43)
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From �n,1 ·�r,1 = 0 we derive (�r,1 × �r,11 ) · �d = 0. Hence �d ⊥ �β. Then

�d = �τ cos φ + �ν sin φ, �n = β. (44)

D2�r · D2�r = G(t2) implies �d · T2�r,1 = �r,1 · �d, and D2�n · D2�r = 0 implies T2�n · �d = 0. Then,
from T2�n,1 ·T2�r,1 = 0 we get T2�n · T2�r,11 = 0, i.e., T2�n = T2 �β. Hence

�d = T2�τ cos φ + T2�ν sin φ. (45)

Therefore, introducing an additional angle ϑ and performing two rotations, we can express
the basis T2�τ , T2�ν, T2 �β as follows:

T2�τ = �τ(cos2 φ + cos ϑ sin2 φ) + �ν sin φ cos φ(1 − cos ϑ) + �β sin φ sin ϑ,

T2�ν = �τ sin φ cos φ(1 − cos ϑ) + �ν(sin2 φ + cos ϑ cos2 φ) − �β cos φ sin ϑ,

T2 �β = −�τ sin φ sin ϑ + �ν cos φ sin ϑ + �β cos ϑ.

(46)

On the other hand, we have T2�r = �r + ε �d√
G, where ε = σ(t2) − t2. Differentiating it

(remember that G,1 = 0) and using (44), (42) we get

T2�τ − �τ
ε
√

G
=

(
κ +

φ,1√
E

)
(−�τ sin φ + �ν cos φ) + κ̃ �β sin φ. (47)

Comparing (46) with (47) we explicitly express κ and κ̃ by φ and ϑ :

εκ̃
√

G = sin ϑ, ε
√

G

(
κ +

φ,1√
E

)
= (1 − cos ϑ) sin φ. (48)

Substituting (48) to the compatibility conditions of equations (42) and (46) we get

ϑ,1 = 0, T2

(
sin ϑ

ε
√

G

)
= sin ϑ

ε
√

G
. (49)

Taking into account �n = �β and equations (42), (46), (48) we compute K using formula (40):

K = − (T2 �β · �r,1 )(D2�r · β,1 )

εEG sin2 φ
= − κ̃ sin ϑ

ε
√

G
= − sin2 ϑ

ε2G
. (50)

Hence, by virtue of (49) and because ε,G by assumption do not depend on t1, we have K,1 = 0
and D2K = 0. �

7. The Lax pair and the Sym formula

Since a pioneering work of Sym ([24], see also [25]) smooth pseudospherical surfaces can
be constructed from solutions of the corresponding spectral problem (Lax pair) using the so-
called Sym formula �−1�,λ. This approach was extended on discrete surfaces by Bobenko
and Pinkall [2, 3].

The results of [7] show that relatively weak assumptions on the spectral problem yield
smooth pseudospherical surfaces in asymptotic coordinates (asymptotic weak Chebyshev
nets). Motivated by these results we consider the following system of quaternion-valued
linear partial differential equations (the Lax pair) on a time scale T1 × T2:

D1� = U�, U = λ(ae1 + be2) + ce3 + h,

D2� = V �, V = λ−1(pe1 + qe2) + re3 + s,
(51)

where a, b, c, h, p, q, r, s are real functions on T1 × T2. Thus (for real λ) U,V take values in
H, and, as a consequence, � is also H-valued.
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The compatibility conditions yield the following system of nonlinear equations:

D2U − D1V + σ2(U)V − σ1(V )U = 0 (52)

(we recall that here σ1, σ2 denote jump operators, not to be confused with Pauli matrices).
Given � satisfying a Lax pair of the form D1� = U�,D2� = V �, we define an

immersion r : T1 × T2 → Im H � E
3 by the (modified) Sym formula

r = �(�−1�,λ ), (53)

where � is the projection (18). Using (21) we compute

Dj r = �(−σj (�
−1)(Dj�)�−1�,λ +σj (�

−1)(Uj ,λ � + Uj�,λ )),

where U1 := U,U2 := V . Hence

D1r = �((σ1(�))−1U,λ �), D2r = �((σ2(�))−1V,λ �). (54)

Theorem 2. Let r : T1 × T2 → R
3 is the surface defined by (53), where � satisfies the Lax

pair (51). Then the coordinates t1, t2 are asymptotic, and formula (40) yields a constant value
K = −4λ2.

Proof. We will check separately right-dense points and right-scattered points. At j -right-dense
points σj (�) = � and

D1r = �−1(ae1 + be2)�, D2r = −λ−2�−1(pe1 + qe2)�, (55)

while at j -right-scattered points σj (�) = (1 + εjUj )� and

D1r = �−1

(
(a + ε1ah + ε1bc)e1 + (b + ε1bh − ε1ac)e2

(1 + ε1h)2 + ε2
1c

2 + ε2
1λ

2(a2 + b2)

)
�,

(56)

D2r = −�−1

(
(p + ε2ps + ε2qr)e1 + (q + ε2qs − ε2pr)e2

λ2(1 + ε2s)2 + λ2ε2
2r

2 + ε2
2(p

2 + q2)

)
�.

In any case the normal vector (compare (39)) can be chosen as

n = �−1e3�. (57)

At j -right-dense points Dj n = �−1[e3, Uj ]�. Therefore

D1n = 2λ�−1(ae2 − be1)�, D2n = 2λ−1�−1(pe2 − qe1)�. (58)

At j -right-scattered points εjDj n = (σj (�))−1e3σj (�) − �−1e3�, hence, after
straightforward computations

D1n = 2λ�−1

(
ε1c(ae1 + be2) − (1 + ε1h)(be1 − ae2) + C1e3

(1 + ε1h)2 + ε2
1c

2 + λ2ε2
1(a

2 + b2)

)
�,

(59)

D2n = 2λ�−1

(
ε2r(pe1 + qe2) − (1 + ε2s)(qe1 − pe2) + C2e3

λ2(1 + ε2s)2 + λ2ε2
2r

2 + ε2
2(p

2 + q2)

)
�,

where

2λC1 = 2h + ε1h
2 + ε1c

2 − λ2ε1(a
2 + b2),

2λC2 = λ2(2s + ε2s
2 + ε2r

2) − ε2(p
2 + q2).

We check that D1n · D1r = D2n · D2r = 0 and (after cumbersome computations)

(D1n · D2r)(D2n · D1r)
(D1r)2(D2r)2 − (D1r · D2r)2

= 4λ2, (60)

which ends the proof. The result is the same for points of any kind (right-dense or right-
scattered in one or both directions)! �
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8. The Darboux–Bäcklund transformation

The standard Zakharov–Shabat construction of the Darboux matrix (see, for instance, [6]) can
be extended on arbitrary time scales. We consider the transformation �̃ = B� (where B is
the Darboux matrix). Then

Ũ = D1(B)B−1 + σ1(B)UB−1, Ṽ = D2(B)B−1 + σ2(B)V B−1. (61)

We confine ourselves to the simplest Darboux matrix B such that

B = N

(
1 +

λ1 − µ1

λ − λ1
P

)
, B−1 =

(
1 +

µ1 − λ1

λ − µ1
P

)
N−1, (62)

where P 2 = P . The projector P has to satisfy the system

D1(P )(1 − P) + σ1(P )U(λ1)(1 − P) = 0,

D2(P )(1 − P) + σ2(P )V (λ1)(1 − P) = 0,

(I − σ1(P ))(−D1P + U(µ1)P ) = 0,

(I − σ2(P ))(−D2P + V (µ1)P ) = 0.

(63)

One can show that P given by

ker P = �(λ1)�c1, ImP = �(µ1)�c2, (64)

where �cj are constant vectors, satisfies (63). Assuming that

U = u0 + λu1, V = v0 +
1

λ
v1, (65)

we compute the transformation rules for u0, u1, v0, v1:

ũ1 = σ1(N)u1N
−1,

ũ0 = (D1N)N−1 + σ1(N)(u0 + (λ1 − µ1)(σ1(P )u1 − u1P))N−1,

ṽ0 = (D2N)N−1 + σ2(N)v0N
−1,

ṽ1 = σ2(N)

(
1 − λ1 − µ1

λ1
σ2(P )

)
v1

(
1 − µ1 − λ1

µ1
P

)
N−1.

(66)

The properties of the Lax pair (the reduction group)

U(−λ) = e3U(λ)e−1
3 , V (−λ) = e3V (λ)e−1

3 , (67)

U †(λ̄)U(λ) = λ2(a2 + b2) + c2 + h2,

V †(λ̄)V (λ) = λ−2(p2 + q2) + r2 + s2,
(68)

impose constraints on the Darboux matrix B (compare [6]):

P † = P, P = e3(1 − P)e−1
3 , λ1 = −µ1 = iκ1 (κ1 ∈ R). (69)

In particular, c2 and c1 are orthogonal, and c2 = e3c1. Therefore

P = 1
2 (1 + ip), p := p1e1 + p2e2, (70)

where p2 = −1, i.e., p2
1 + p2

2 = 1. The longest equations of system (63) simplify

ũ0 = (D1N)N−1 + σ1(N)(u0 + κ1(u1p − σ1(p)u1))N
−1,

ṽ1 = σ2(N)σ2(p)v1p−1N−1,
(71)

and the Darboux matrix and its inverse become

B = N(λ − κ1p)

λ − iκ1
, B−1 = (λ + κ1p)N−1

λ + iκ1
. (72)
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Finally, the transformation on the level of surfaces reads

r̃ = r +
κ1

λ2 + κ2
1

�−1p�. (73)

Therefore, the Bäcklund transformation has exactly the same form as in the continuous and
in the discrete case: the segment joining r̃ and r is tangent to r and has a constant length.
The main difficulty (in the case of time scales different from R or εZ) is to find explicit seed
solutions.

9. Conclusions

In this paper the notion of pseudospherical immersions is extended on the so-called time
scales, unifying the continuous and discrete cases in a single framework. It can be especially
important in the context of the numerical approximation of continuous integrable models.
Another important problem raised in this paper is a search of possible sets the integrable
systems can be considered on.

The Gaussian curvature of discrete pseudospherical surfaces is defined in a way admitting
a straightforward extension on time scales (proposition 7). Surprisingly, the simple formula
(40) turns out to be valid for pseudospherical surfaces in asymptotic coordinates on any time
scales (theorem 1). The range of its applicability will be further investigated.

The quaternion-valued spectral problem (51) for pseudospherical surfaces in asymptotic
coordinates has a very general form. Actually, theorem 2 generalizes some results (isospectral
case) of my earlier paper [7] not only on the discrete case, but on arbitrary time scales.
The Darboux–Bäcklund transformation (73) can be used to generate explicit pseudospherical
surfaces (soliton solutions) on some interesting, non-standard, time scales. The work in this
direction is in progress.

It would be interesting to extend any other results of the integrable discrete geometry on
arbitrary time scales.
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